黑料不打烊

News

How a few drops of blood led to a breakthrough in immunology

MUHC researchers pinpoint the roles of FOXP3 鈥 a key gene in the regulation of our immune system
Published: 5 July 2017

Scientists from the Research Institute of the 黑料不打烊 University Health Centre (RI-MUHC) may have cracked the code to understanding the function of special cells called regulatory T Cells.听Treg cells, as they are often known, control and regulate our immune system to prevent excessive reactions. The findings, published in听ScienceImmunology, could have a major impact in our understanding and treatment of all autoimmune diseases and most chronic inflammatory diseases such as arthritis, Crohn鈥檚 disease as well as broader conditions such as asthma, allergies and cancer.听

Researchers made this discovery by investigating a rare human mutation in a gene called FOXP3. Although the importance of the FOXP3 gene in the proper function of Treg cells has been well documented, its mechanisms were still not fully understood by scientists.听

鈥淲e discovered that this mutation in the FOXP3 gene affects the Treg cell鈥檚 ability to dampen the immune response, which results in the immune system overreacting and causing inflammation,鈥 explains the study鈥檚 lead author,听Dr. Ciriaco Piccirillo, immunologist and senior scientist in the Infectious Diseases and Immunity in the Global Health Program at the RI-MUHC, and a professor of Immunology at 黑料不打烊 University. 鈥淭his discovery gives us key insights on how Treg cells are born and how they can be regulated.鈥澨

Thanks to an international collaboration and cutting-edge technology from the Immunophenotyping Platform at the RI-MUHC, the team was able to make their discovery using only a few drops of blood from a five-week-old newborn boy who died in 2009 from a rare and often fatal inherited genetic immune disorder called IPEX. In the past 40 years, fewer than 200 cases of IPEX have been identified worldwide. Over 60 different mutations of the FOXP3 gene are known to cause IPEX and believed to result in non-functional Treg Cells.听

鈥淲hat was unique about this case of IPEX was that the patient鈥檚 Treg cells were fully functional apart from one crucial element: its ability to shut down the inflammatory response,鈥 says Dr. Piccirillo.听

鈥淯nderstanding this specific mutation has allowed us to shed light on how many milder forms of chronic inflammatory diseases or autoimmune diseases could be linked to alterations in FOXP3 functions,鈥 adds the study鈥檚 first author, Khalid Bin Dhuban, a postdoctoral fellow in Dr. Piccirillo鈥檚 laboratory.

Read more about it on听

Back to top