Analysis Module

[AN. 1]

Let > 0 be xed. Show that the set of all real numbers $x \ge [0, 1]$ such that there exist in nitely many pairs $p; q \ge \mathbf{N}$ such that $jx = p = qj < 1 = q^{2+1}$ has Lebesgue measure 0.

[AN. 2]

Let f be a uniformly continuous function on R. Suppose that $f \ge L^p$ for some p, 1 p < 1. Prove that $f(x) \ne 0$ as $jxj \ne 1$.

[AN. 3]

(a) Give a denition of $jjfjj_1$ of a measurable complex function f.

(b) Recall that the essential range of a function $f \ge L^{1}$ (;C) is the set consisting of complex numbers w such that

$$(fx: jf(x) \quad wj < g) > 0$$

for every > 0. Prove that R_f is compact.

(c) Show that $jjfjj_1 = \sup_{w \ge R_f} jwj$.

[AN. 4]

(a) Give a de nition of a locally compact topological space.

(b) Give an example of a Borel measure on R such that $X = L^2(R; \cdot)$ is locally compact and explain why it is so.

(c) Give an example of a Borel measure on R such that $X = L^2(R; \cdot)$ is not locally compact and explain why it is so.

Numerical Analysis module

[NA. 1] Quadrature and Newton's Method

Let
$$f(x) = \frac{1}{4}(x - 5)^4 + x$$
.

- (a) Compute $f^{\emptyset}(x)$; $f^{\emptyset}(x)$. Is f convex? Explain your answer.
- (b) Find the minimizer of f(x).
- (c) Write out the formula for Newton's method for function minimization. (d) Compute two Newton iterations, for $x^0 = 4.5$. Are the values approaching the minimum? (e) Approximate the integral $\int_{0}^{3} \frac{1}{x^2+2} dx$

4

[NA. 3] The conserved quantity q with ux function F satis es the conservation law

(1)
$$\frac{@}{@t}q(x;t) + \frac{d}{dx}F(q;x;t) = 0; \quad \text{for } x \ge [0;1]$$

along with no- ux boundary conditions

F(q; x; t) = 0; for x = 0; 1:

- (a) Show that the total mass of q is conserved.
- (b) Assume that Fick's law of di usion holds, so that $F(q(); x; t) = (x)q_x(x; t)$. The energy is $E(t) = \frac{1}{2} \frac{K_1}{0} q^2(x; t) dx$. Prove that the energy is non-increasing.
- (c) Let G = [0; h; :::; 1] be the nite di erence grid, where h = 1 = (n 1). Let \mathscr{Q}_X^h be the forward di erence operator on the grid. Let $Q = (Q_0; :::; Q_n)$ be a grid function. Write down the matrix M which maps the grid function Q to the grid function $\mathscr{Q}_X^h Q_n$ and includes the boundary conditions.
- (d) Let $Q(t) = (Q_0(t); :::; Q_n(t))$ be a time-dependent grid function. Consider the method of lines for the PDE,

$$\frac{d}{dt}Q + M^{\dagger}(diag()MQ)$$

Prove that mass is conserved, and that the discrete energy $E^{h}(t) = \frac{h}{2}hQ(;t);Q(;t)i$ is non-increasing.

[NA. 4]

(a) Consider the initial value problem for the variable coe cient parabolic equation on the real line

 $u_t(x; t) + f(x; t)u_x(x; t) = \log tmark1$ variable-19.98 9. 9.9626 Tf 242.264 0 Td [(F) rabolic equations of the transformation of

Partial Di erential Equations Module

[PDE 1.] We consider the boundary value problem

where U = f(x; y) : y > xg and ; $2 \mathbb{R}$

(a) For which values of and does the problem (P) satisfy the noncharacteristic boundary condition?

- (b) Give all solutions of the problem (P) in case = 0 and = 1.
- (c) Show that there does not exist any solution of the problem (P) in case = 1 and $\neq 2$.

[PDE 2.]

- (a) Let U be an open and bounded subset of \mathbb{R}^n , n = 1. Show that for any functions $u; v \ge C^2(U) \setminus C^0(\overline{U})$ such that u = v in U and u = v on @U, we have u = v in U.
- (b) Now we assume that n = 2 and $U = x 2 \mathbb{R}^2$: $R_1 < jxj < R_2$ for some real numbers $R_2 > R_1 > 0$. Show that for any function $u \ge C^2(U) \setminus C^0(\overline{U})$ such that u = 0 in U, we have

$$M(r) = \frac{M(R_1)\ln(R_2=r) + M(R_2)\ln(r=R_1)}{\ln(R_2=R_1)} \quad 8r \ 2(R_1;R_2)$$

where $M(r) = \sup fu(x) : jxj = rg$.

Hint: Remember that the function $v(x) = a + b \ln jxj$ is harmonic in $\mathbb{R}^2 n f 0g$ for all $a; b 2 \mathbb{R}$.

[PDE 3.] Let U be an open and bounded subset of \mathbb{R}^n , n = 1, with smooth boundary. We consider the problem \mathbb{R}^n

$$\sum_{k=1}^{\infty} \mathscr{Q}_t^2 u = u \quad \text{in } U \quad (0; 1) n$$